

Licentiate Thesis proposalLicentiate Thesis proposalLicentiate Thesis proposalLicentiate Thesis proposal

Context-addressed communication dispatch

Alisa Devlic

Royal Institute of Technology (KTH)

Primary advisor: Prof. Gerald Q. Maguire Jr.
 Secondary advisor: Prof. Mark Smith
 Committee member: Dr. Fredrik Kilander

15 October 2006

 i

Table of contents Table of contents Table of contents Table of contents

1 Introduction .. 1

1.1 Problem statement .. 1

1.2 Contribution ... 1

1.3 Background .. 2

1.3.1 Sensors ... 4

1.3.2 Knowledge environment .. 4

1.3.3 Communication and distribution of context... 4

1.3.4 Context source.. 5

1.4 Use of context information... 6

1.4.1 Examples of context-aware systems... 7

1.5 Research problem revised .. 8

1.6 Reasons for utilizing SIP infrastructure ... 11

1.7 Summary of requirements for providing context information 11

1.8 For further investigation... 12

2 Related work .. 12

2.1 Ambient Networks ... 14

2.2 Adaptive and Context-Aware Services .. 17

3 Ideas and insights ... 20

3.1 CPL extensions... 20

3.1.1 Client application ... 24

3.1.2 Match component ... 25

3.1.3 Wrapper .. 26

3.1.4 CPL-C module extensions.. 26

3.1.5 Context ontology .. 26

3.1.6 Measurements... 27

3.2 Power consumption for different activities: iPAQ measurements 29

3.2.1 Future work .. 31

3.3 Allignment with an EU project in which Appear Networks is involved.................. 32

3.4 Future work .. 34

4 Statement of the solution being sought .. 34

5 Plan of action.. 35

6 Thesis outline ... 36

7 References .. 37

 1

1111 IntroductionIntroductionIntroductionIntroduction

Communication has always been an essential part of people's lives. They would meet

regularly to exchange goods, ideas, and socialize together. Their senses helped them to

share an awareness of their environment: people, places, and objects. With the

appearance of mobile devices and advances in computing and internet techologies,

people started to use device-mediated communication and communicate globally. With

this increasing globalization, more and more people travel both for business and

private purposes, and they want to use various types of mobile devices for

communication to be reachable. This phenomenon has brought benefits to society due

to technological developments, but people lost some of the emotional and intuitive

aspects of their communication. Additionaly, there is a myriad of electronic devices in

people's environment for measuring location, temperature, date and time, lighting,

noise level, etc. Combining this knowledge of the environment with ambient

interaction (interaction between heterogeneous computing devices) we can create new

techniques to enhance people's communication experience. One way to achieve this is

to make applications and systems context-aware, meaning that these applications use

context information and react to it, by adapting their behavior according to changes in

context.

1.11.11.11.1 Problem statementProblem statementProblem statementProblem statement

The problem to be addressed in the thesis is how to address and communicate with

people based on their context, rather than simply based upon their network address.

The exchange of information (including different media types, such as images, audio,

and video) is supported in different ways on various devices. End users have their own

preferences of how they would like to receive information from different parties

(regarding both communication means and device) and these preferences can change

with time and the situation the user finds themself in. The challenge is to overcome

these difficulties and to create and build a model that can initiate session to correct

users based on these users' current context, establishes and manages context for these

sessions, and facilitates exchange of information using the users' preferred

communication means in the current context.

1.21.21.21.2 ContributionContributionContributionContribution

The contribution of this thesis work is to find new, innovative uses of context

information and to realize a novel approach to context-addressed communication

dispatch, meaning that information is to be sent to a subset of users whose context

matches the specified context. Therefore, destinations will be identified by context

instead of by network address (e.g. all people in the meeting room). Communication

sessions will be triggered based upon context information, where the context

information itself will be inferred from the situation, and not explicitly stated by the

 2

user. End users will be able to set their preferences regarding how would they prefer to

receive information (e.g., as an instant message, using RSS feeds, as a VoIP call, or by

file sharing) and on which device they would like to receive it (if they are using

multiple devices). Their preferences can be context-based, so that the behavior will

change as their current context changes. Entities called communication dispatchers

will have the responsibility for establishing, maintaining, and terminating context

sessions with the end user, as well as delivering content using the user's preferred

communication means. An assumption is that a suitable means of content information

collection and dissemination exists and that users will be willing to allow their context

information to be used by the communication dispatchers.

1.31.31.31.3 BackgroundBackgroundBackgroundBackground

There have been a number of attempts by researchers to define context, we will

examine these in section 2. However, in this paper we have adopted the following

definition of context from Dey and Abowd [4]:

Context is any information that can be used to characterize the situation of an

entity. An entity can be a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and the

application themselves.

The important contribution of this definition is that the context information

characterizes the situation from the perspective of an entity with regard to attributes

that are application domain-specific. In this thesis we will further focus on only the

context information that is relevant concerning initiating communication with an

entity.

Context information will be collected from the environment through some automated

means (i.e., via sensors). A context model will be used to hide low-level sensing

details from applications. This technique facilitates extensibility, since applications

don't have to be modified to accomodate different sources of context information and

simplifies the reusability of hardware-dependent sensor code due to abstraction and

encapsulation, which eases application development. Application developers should be

able to simply choose what information from the set of available knowledge is

relevant, then use this to determine how to initiate communication to this user.

We define context-awareness as:

A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the current user's task.

A system is context-aware if it can extract, interpret, and use context information and

adapt its functionality to the current context of use. There are two types of context-

awareness:

• Active context awareness: an application automatically adapts to discovered

context, by changing the application’s behavior.

 3

• Passive context awareness: an application presents the new or updated context

to an interested user or makes the context persistent for the user to retrieve later.

With context-aware systems, applications can adapt to the context information and

need less explicit input from the user. They need to make decisions based on the

information available to them, to make the user perceive a better result and be more

productive.

In a global sense, a context-aware system (shown in fig.1) enrolls three types of

entities: context sources (CS), context space, and context consumers (CC). Context

sources provide context information to the context space. Context consumers use

information that is stored in context space to accomplish different tasks. Context space

is an abstraction of distributed repository of context information which stores context

information produced by context sources and allows it’s querying by authorized

context consumers.

Figure 1: Context-aware system consisting of the following entities: context sources (CSi),

context space, and context consumers(CCi)

A context-aware system consisting of sensors (Si) and middleware supporting

(context-aware) applications on top of it, as depicted in fig. 2. Middleware comprises

knowledge environment responsible for discovering new sources of context

information, aggregating information coming from different sensors, composing

existing knowledge into new concepts, and storing context information; and a

component for communication and dissemination of context to the applications. Note

that applications can contain sensors which provide a context source (i.e., generate

context information) while consuming context information from the knowledge

environment.

CS1

CS2

CSi

Context space

CCi

CC2

CC1

 4

Figure 2: Context-aware system

1.3.11.3.11.3.11.3.1 SensorsSensorsSensorsSensors

Sensors are hardware or software entities that extract raw data from the device or the

environment as input to the context-aware system. Sensors are usually objects that are

equipped with some form of computational capacity and have simple sensing and

communication facilities. Examples include: location services, a calendar application,

microphones, cameras, accelerometers, motion detectors, biosensors, etc.

1.3.21.3.21.3.21.3.2 Knowledge environmentKnowledge environmentKnowledge environmentKnowledge environment

The knowledge environment is responsible for collecting and aggregating distributed

sensor data, modelling it with higer-level abstractions, synthesizing information to

create higher-level context, and storing it for later use (i.e., caching it). It should be

capable of discovering and utilizing new sources of context information (sensors).

1.3.31.3.31.3.31.3.3 Communication andCommunication andCommunication andCommunication and distribution distribution distribution distribution of contextof contextof contextof context

The component for communication and distribution of context is used to store and

disseminate context information from the knowledge environment layer to

applications, and vice versa (in the latter case it is assumed that applications serve as

new sensors and produce new context information). Such middleware must provide an

API to applications that wish to use context information.

 5

This approach enables applications to produce intermediate results which can be used

as a new source of context information, by inputting this information as new sensor

information to the knowledge environment layer.

1.3.41.3.41.3.41.3.4 Context sourceContext sourceContext sourceContext source

Figure 1 showed a context-aware system represented with three types of entities:

context sources, context space, and context consumers. This subsection discusses the

concept of a context source in the more detail, as illustrated in figure 3. The context

source, as mentioned before, generates context information. Generation of context

information involves functionalities already specified as responsibilities of the sensors

and knowledge environment, such as: obtaining raw data, aggregating this data where

necessary, creating context abstractions to be used by applications, composing

information into higher-level context, and providing this information through the

defined interface as context information. These functionalities are assigned to separate

components, called context providers, context aggregators, and context synthesizers.

Context providers

Context providers utilize data from sensors. They interact with these sensors to obtain

raw sensor data and model it to produce context information. They have to have a

network address, a notion of time, processing capabilities, and some storage that

allows them to perform their tasks. Context providers are usually collocated with

sensors, but could also be located at a specific node in the network that is responsible

for sensor data processing.

Context providers create higher-level abstractions of the raw-sensor data which are

provided as context information to applications via API. Context providers use a

common formalism (model) to describe context in a so called context element. They

utilize a common interface to place their output (i.e. context information) in the

context space.

Context aggregators

Context aggregators merge context information provided by different context

providers and supply it to context synthesizers. Context aggregators are usually

collocated with context synthesizers.

Context synthesizers

As context can be composed of different attributes connected with multiple logical,

boolean, or other operators (implemented as functions), a context synthesizer applies

these rules (operators) to the supplied data, performs reasoning, and derives new

knowledge (context) from it. It should provide new (inferred) context to the system

through its context provider.

 6

A context source can be arbitrarily complex, depending on the nature of context

information provided (i.e., if it requires aggregation of information from different

context providers and synthesizers). Thus, it can range from having only sensors and

context providers, to having a complex internal architecture, as shown in fig.3.

Context source

Figure 3: Context source's architecture

1.41.41.41.4 UsUsUsUseeee of context of context of context of context informationinformationinformationinformation

So far context has been integrated into multiple context-aware systems, creating

applications limited only by someone's imagination. By looking at the existing

context-aware systems we have identified the following uses of context information:

• Context-triggered action – actions are defined as if-then-else rules that specify

how context-aware systems should behave in a certain context (e.g. if the user

is in a meeting) or how to react to the occurence of some event (e.g., in case of

increase of temperature in the server room alert the system manager). An

example is the context-aware system in a hospital setting described by Muñoz

et al. [32] which sends instant messages written by doctors when a certain set of

circumstances is satisfied. The contextual elements this system is aware of

include location, time, roles, and device state.

• Contextual information and commands – interpretation of user commands

depends on the context in which they are issued. An example of contextual

commands is the project lcron which allows for printing to the nearest printer

 7

[34] and telephone auto-dialing that automatically selects the phone number

from different locations having different area codes, handling of extensions, and

telephone interfaces [34].

• Proximate selection – selecting an object located nearby (e.g. nearest printer)

before one further away when the user wants to make use of an object of this

type. An example of proximate selection is the Active Badge System [26]

which forwards a user's incoming call to the nearest phone to this user.

• Automatic contextual reconfiguration – adding and deleting components, or

changing connections between components based on current context.

PARCTAB [30] is an example of a context-aware system which upon a user's

entry to a room adds a connection to an instance of a virtual whiteboard

associated with that room. When the user leaves the room, the connection of the

user's PARCTAB to the whiteboard is broken.

• Metadata tagging – attaching context information to existing data to give more

implicit information about objects in the system (e.g. attaching a date and time,

identities of people present, and current activity to user's recorded audio clip).

An example of such a system is the Context Toolkit [31] that uses context

tagging of information to facilitate later retrieval.

• Terminal adaptivity – presenting only relevant information to the user on the

small screen of a mobile device. A nice example of terminal adaptivity is

dynamic adaptation of multimedia services on mobile and fixed terminal

devices based on device features and presentation format (e.g., HTML, WML,

SMS, E-mail, and speech-driven browsers) [35].

• Context information filtering – filtering available information and delivering

only relevant information to the user depending on their current context. The

Kimura system [29] gathers context information, converts it into the working

context, and displays the user's work activities on an electronic whiteboard

based on his/her working context.

• Context sharing – sharing of context information among communication peers.

The Hydrogen project [33] enables the exchange of context information among

client devices via WLAN, Bluetooth, etc. when they are in physical proximity.

• Context-aware service provisioning – deployment and installation of different

services on the user's device based on his/her current context. Service

provisioning on different wireless portable devices [36] requires tracking

clients, suggests connections to the most suitable resources (either local or

remote), maintains session states between client disconnection and successive

reconnection (possibly in a different locality or via a different access network),

supports changes in the logical set of accessible resources during service

provisioning, modifies service management decisions, and enables provisioning

of new location-dependent services.

1.4.11.4.11.4.11.4.1 EEEExamples of contextxamples of contextxamples of contextxamples of context----aware systemsaware systemsaware systemsaware systems

In this work we make several proposals to improve people's communication based

upon utilization of context information. Thus we make several novel uses of context,

such as helping to determine:

 8

• the most appropriate device the user should use in the particular context (e.g.

using a cell phone on the move is appropriate, but while in the theatre or in a

meeting it is (very) inappropriate)

• the most appropriate communication format the user would like to deliver

information in the user's current context (e.g. the user might set preferences

regarding receiving e-mail, SMS, facsimile, voicemail, voice calls, instant

messaging (IM), etc. depending upon the user's context)

• change of session parameters (e.g. if the user is currently engaged in a call, but

there is another, urgent-priority, incoming call, the system could utilize

information about the user's context and automatically place the original call on

hold and switch to the more important call, or if there is now more bandwith

available to suggest that the user could add video to their existing audio only

session)

• allocating resources such as computing resources, bandwidth, memory (e.g.

based on nodes' capacity and availability, the system could determine which

node should run a specific service, store particular information, etc.)

• destination address for context-addressable communication (e.g. to address

recipients based on their context rather than their network address or

personal/corporate URI)

• (control) access to information based on the user's role, where the user's role is

a part of his/her context

1.51.51.51.5 Research problem revisedResearch problem revisedResearch problem revisedResearch problem revised

The novel approach we would like to realize is context-addressed communication,

meaning that information is to be sent to a subset of users whose context matches the

specified context. This assumes as noted previously that a context collection and

distribution system exists and that the user has elected to participate by allowing their

context to be utilized. This generalizes the notion of location-based multicast.

Therefore, destinations are identified by context instead of by network address,

whereby either the address is determined with context (e.g. all people in the meeting

room), or the content determines the message routing (e.g. minutes of meeting are sent

to participants). It can be seen as a kind of context-addressable memory that knowing

a user's context maps a specific context address to the user's SIP URI or network

address. This is similar to the use of domain names to provide an abstraction for IP

addresses, SIP URIs to provide an abstraction for a domain name, the use of a context

address further abstracts the notion of an address.

We would like to create a new mode of communication that could be triggered by

context information, where the context information itself is inferred from the situation,

and need not explicitly be stated by the user. Therefore, we should create an overlay

network capable of creating, modifying, adapting, and maintaining sessions according

to contextual parameters. This extends the earlier goal of context-aware delivery

(which concerned only the initiation of a session to deliver some content) to context-

aware session control.

 9

The general idea is presented in the following figure:

Figure 4: Context-addressed communication

One of the users, called message uploader, (e.g. the project manager) wants to send a

message to all available users who should attend a meeting (i.e., whose context is not

"in a meeting", not "on vacation", and not "with a customer"). Instead of utilizing a list

of meeting participants, such a system should be able to automatically compute who

should come to the meeting based on users' current context. The message can be any

kind of object or media file, e.g. text, image, audio, or video. Users may set their own

preferences regarding how would they prefer to receive such a message (e.g. as an

instant message, using RSS feeds, as a VoIP call, or by file sharing) and on which

device they would like to receive it (if they are using multiple devices). Their

preferences can be context-based, so that the behavior changes as their current context

changes (i.e., depending upon the time and situation they find themselves in).

Once the context manager receives the message, it must decide to which nodes it

should forward this message, in what format, and by which communication means. It

should also utilize information about the users' preferences (including when a user is

willing to receive such a message, thus it may need to store the message and schedule

it for later delivery).

 10

Figure 5: Context manager components

A context service is a distributed service that offers functions such as storing,

retrieving, or modifying context parameters, and mapping them to particular nodes.

For the purposes of this thesis should communicate with context sources and with a

SIP proxy server, as depicted in fig.5. Context sources store (publish) their values to

the context service. Users' devices can also contain context sources that provide

context values to the context service. The context service associates this context with a

given SIP proxy server (i.e. its SIP URI) as soon as the updated context is available.

Different types of communication dispatchers take the responsibility for establishing,

maintaining, and terminating context-aware sessions with the end user, as well as

delivering content using his/her preferred communication means.

Thus the context manager is comprised of components built as mobile middleware, to

be able to run it on mobile devices, such as PDAs and smart phones. A secondary goal

would be to determine how a future deployment could function in peer-to-peer

networks. Such a future vision is shown in fig.6.

 11

�������

����	�

�����

����

�������
����	�

�����

����

�������

����	�

�����

����

�������
����	�

�����

����

Figure 6: Peer-to-peer context-addressable communication dispatch

1.61.61.61.6 ReasonsReasonsReasonsReasons for utilizing for utilizing for utilizing for utilizing SIP infrastructure SIP infrastructure SIP infrastructure SIP infrastructure

There are numerous reasons to utilize a SIP [1] infrastructure for this thesis project.

First, it is a simple, scalable, text-based protocol, that offers a number of benefits

including extensibility and provision for call/session control. SIP has been extended by

IETF's SIMPLE (SIP for Instant Messaging and Presence Leveraging Extensions)

Working Group to enhance basic protocol with Instant Messaging and Presence (IMP)

functionalities. A presence system allows users to subscribe to each other's SIP UAs

and be notified of changes in the user's state (note that we see context as an extension

of information that is part of the user's state). Instant Messaging (IM) is defined as the

exchange of content between a set of participants in near real-time. The SIMPLE

extensions to the SIP protocol enable it to exchange messages inside a SIP session and

provide an event package mechanism for notification of presence information.

Additionaly, SIP provides some mobility support and is suitable for providing IMP

services in mobile devices.

1.71.71.71.7 SummarySummarySummarySummary of requirements of requirements of requirements of requirements for providing context informationfor providing context informationfor providing context informationfor providing context information

In order to provide suitable context support the system needs to:

• Provide up-to-date, valid context information

• Distribute stored and collected context information

• Gather, model, process, and disseminate context information

• Detect conflicts and resolve context coming from different sources

 12

• Cache context information for reasoning, disconnection, and post-analysis

purposes

• Follow policies for authorization in order to control access to context

information

1.81.81.81.8 FFFFor further invesor further invesor further invesor further investigationtigationtigationtigation

Some potential investigations:

• Determine the cost of utilizing a Domain Name System (DNS) for resolving

names (either via a large local database or connectivity to other databases) and

mobile IPv6 [24] for network configuration of the nodes. Mobile IP (MIP) [24,

25] will be used for managing mobility in next generation wireless networks.

MIP supports mobility of nodes across different network attachment points

while maintaining connectivity with other nodes on the Internet (so called

corresponding nodes, CNs) by retaining a single mobile IP address. Since IPv6

does not have the limited address space problems which IPv4 has, IP addresses

can be assigned for a longer time to mobile devices. Additionaly, IP mobility, in

particular MIPv6, can be used to support terminal mobility for multi-access

networks, networks that support both cellular access through GPRS/UMTS and

for example wireless LAN access.

• Is it feasible to make a decision based on the nodes' resource information (more

precisely current battery level, battery power consumption, processes running

on the device, processing power, and memory status) as to which node should

perform name resolution and run a context manager.

• Can context processing be based on resolving names (similar to DNS mapping

of IP addresses to node names).

2222 RelatedRelatedRelatedRelated work work work work

It has been a challenging task for researchers to find a common definition of what

context is and what information is included. The first and most used type of context

information is location, but over the last few years the list of context attributes has

grown to include: time, identity of people and objects in the user's environment,

orientation, user's emotional state, activity, etc.

Schilit and Theimer, the pioneers of context-aware computing, stated that important

aspects of context answer the following questions: where are you, whom are you with,

and what resources are nearby [2].

Chen and Kotz [3] have extended Schilit's version of context and classified the context

as: computing context (network connectivity, bandwidth, and nearby resources such as

printers, displays, or workstations), user context (the user's profile, location, nearby

people, and current social information), physical context (lightning, noise level, traffic

 13

conditions, temperature), and extended it with the time context: time of the day, week,

month, and seasons of the year.

Schilit's classification of context has been further expanded by Dey and Abowd and

defined as: "Context is any information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and application

themselves." [4]

The above definition includes any information about user's environment that describes

the situation of the user. When dealing with context three classes of entities can be

identified: places (e.g. rooms, buildings), people (e.g. individuals, groups), and things

(e.g. physical objects, computer components). Each of these entities can be described

by various context attributes.

A popular way to classify context is to describe it using different context dimensions,

such as virtual and physical context [5]. The goal of context-aware system is to gather

both virtual and physical context information and merge this to form a complete view

of a user's environment. Virtual context encompasses information about the version of

the operating system of the device the user is using, the device's interface capabilities,

the available wireless connectivity, email messages sent and received by the user to

abstract his/her interaction with others documents edited, ... Physical context may be

the presence of another entity (user or device); location and availability of the user's

colleagues; the proximity to a particular printer; information indicating user physical

activity, such as is the user standing, walking, or sitting; and the current weather

conditions. Most existing systems apply physical context information, especially

location: the Active Badge System [26], the Cricket Location System [27], the Radar

System [28], etc. The Kimura system [29] uses virtual context from the user's desktop

actions to help classify, interpret, and visualize other forms of physical and virtual

context, such as user's work activities and context information sensed from around the

office. The system integrates physical and virtual context information into

visualization of the user's disparate activities to help the user interpret and act on this

available information. It automatically tracks documents attached to the user's working

context, including text files, Web pages, and other application files, as well as other

indications of an ongoing activity, such as email messages awaiting replies and

outstanding print jobs.

Furthermore, context information can be subdivided into static and dynamic context

information [5]. Static context refers to any information related to user's environment

that is invariant. This information is mostly obtained from the user. The rest of context

is dynamic and may be highly variable: for example a user's location and activity

might change from one minute to the next. Dynamic information must be accumulated

indirectly, by means of sensors and more frequently acted upon. The persistence

characteristics should influence the frequency at which context information must be

gathered and how long the gathered information is valid. The context information can

be retrieved by requests or by activating triggers (i.e., a special form of queries that

 14

asynchronously obtain the response when a specified condition is met). Additionaly,

past context information may be needed to understand the full state of the environment

if the application requires such a context. It should be stored in some kind of

repository in a form that can be processed by applications, or the raw data should be

stored in the repository and semantic annotations must be added by some other

component, i.e. middleware or the application itself. In the former case, middleware

can have a dedicated subcomponent to model the information retrieved from the

repository and provide it to the application on request. In the latter case, every

application has to model the context information it will use. The benefit of this

approach is the openess and extensibility, i.e. new context information is easily added

to the system. The drawback is the absence of reusability, i.e. the same context

information will be modelled by different applications.

There is a concern for the delay between production and consumption of context

information, so that users might obtain outdated information. Other sources of concern

regard availability (possible broken link between context producer and context

consumer(s)) and reliability of context producers to generate context information.

Thus, context information has to have a timestamp indicating when it was generated.

Context history includes storing the user and physical contexts over a period of time in

order to establish patterns of user mobility and situational behavior in order to predict

resource consumption and future context values [5]. The main concerns about

maintaining historical context information are memory capacity and privacy, since

most context sources are constantly providing context data and the context-aware

system must decide what historical information is worth collecting and at what level of

resolution. Therefore a large storage capacity is needed and it must offer the

possibilities of querying and modifying the stored knowledge at a high abstraction

level to both applications and sensors for updating and retrieving context information.

The storage can be distributed across multiple devices or it can be implemented in a

node attached to a fixed network. In the first case, efficient algorithms (in terms of low

resource consumption) have to be implemented to process this information and to

extract the meaningful data, whereas in the latter case the lightweight process is not

necessary.

I have investigated several research projects that are looking at context-awareness

from different angles (network domains and environments); each is decribed in a

following section.

2.12.12.12.1 Ambient NetworksAmbient NetworksAmbient NetworksAmbient Networks

Ambient networks (AN) project [6] envisages cooperative utilization of heterogeneous

networks that belong to different operators or technology domains (ranging from

personal area networks (PANs) to satellite networks), on demand, transparently, and

without the need for preconfiguration. End users are seen as networks as well,

operating their own network of devices in homes or offices, and around their body

 15

(such as inter-vehicle networks, body area networks, and sensor networks). All of

these networks are integrated into a larger system and comprise a so called ambient

networking.

Ambient networks evolved from all-IP-based mobile networks. They clearly separate

control from transport functions to differentiate between underlying network

technology and applications, so that applications have a uniform view of network

connectivity. Control functions are isolated and extended to form an Ambient Control

Space (ACS), which set of functions to guarantee cooperation between networks.

Control functions cooperate to implement specific control functionality. A

modularization of the control space enables operators to adapt their networks' control

functionality to their specific needs, while maintaining global interoperability. A

second advantage of modularization of a control space is dynamic, plug-and-play

integration of new control space functionality during the lifetime of the network. This

improves evolvability and adaptability of deployed infrastructure.

The ambient control space provides three generic interfaces: Ambient Network

Interface (ANI) (i.e., a network-level interface used for network composition),

Ambient Resource Interface (ARI) (i.e., a network-level interface to access network

resources), and Ambient Service Interface (ASI) (i.e., an interface towards the

user/application plane).

The Ambient Networks project aims to create a common framework for context-

awareness across all functions in the Ambient Control Space in order to adapt service

availability and service delivery in heterogeneous networks and dynamic environments

[7]. This framework should support collection, processing, management, and

dissemination of context information enhanced with context-level agreement

negotiations and support for conflict resolution. AN differentiates between user-centric

context information targeting end user's applications and network context information

used as a basis for control decisions about changes in the network. Network context

information can be used to make networks more responsive to user needs and enhance

the user's experience by making communication easier and more available [8].

AN has defined an architecture for context management, called contextware [37], that

coordinates information exchange between different entities in the control space

(mobility, media delivery, security, network management, connectivity, multi-access,

and sensor network), collects and distributes context information from the

environment, as well as provides information at different levels of abstraction. The

context information is enhanced via context-level agreement negotiations and support

for context resolution. AN believes that the exploatation of network context

information will be the basis for control decisions in future networks. Therefore, an

open and generic system is designed to provide context information to functions inside

and outside the ACS, rather than having all functional entities working on specific

methods to derive the required network information.

 16

The overall architecture is designed around two main functional areas: Context

Coordination Functional Area (ConCord FA) and Context Management Functional

Area (CM FA), one interfacing to other FAs of Ambient Networks and the other for

implementing the core internal operations required in the context provisioning system.

The ConCord FA is the first point of contact for any context client requesting context

information, negotiating the type and quality of context information, and investigating

possible context information conflicts with the ConCord FA. The ConCord FA has the

following functions, shown in fig.6:

• Subscription management – the function that helps to establish associations

between context sources and context clients. It is called by both end-user

services through the ASI, and by network services (to specify the context

information they are interested in).

• Negotiation management – the function for negotiation between entities

requesting context information and context providers. This negotiation might be

requested because of restrictions to access to some information or the requestor

might ask for information that is not readily available. To negotiate these cases,

this function is called by the Conflict resolution function or by the Context

Processing function. It may also cooperate with Negotiation management

function in other ANs.

• Conflict resolution – the function to identify and manage possible conflicts that

arise in the exchange of information between administrative domains. It may

call the Negotiation management function if, for example, some negotiation

needs to take place to resolve conflicts.

Figure 6: ConCord FA's and CM FA's functions and relationships

The CM FA manages context within and across domains. This involves operations,

such as collection, modeling, and dissemination of context information to the

interested entities, as well as managing the sharing of context information among

different domains i.e., cross-domain management. The CM FA is initiated through the

Context Co-ordination FA

Subscription

Management

Conflict

Resolution

Negotiation

Management

Context Management FA

Context

Retrieval

Context

Processing

ASI

ANI

ARI

Context

Associations

Management

ASI

ANI

ARI

 17

ConCord FA and is also responsible for scheduling interactions between context

sources and context clients, monitoring these interactions, re-allocating channels of

interaction (in case of context changes), and finally aggregating and composing

context according to clients' requirements. The CM FA implements the following

functions:

• Context association management – the function fulfills the context association

requirements in order to manage associations between context clients and

different context data, and to notify the subscribing clients of any changes. It

calls the Context retrieval and Context processing functions to fulfill the agreed

context associations.

• Context retrieval – the function is significant as contexts in ANs vary

significantly in changing situations. It provides methods to lookup, fetch,

search, and index context information in the AN space. It is called by the

Context association management and Negotiation management functions. It can

retrieve context information from other ANs through the ANI, while the ARI is

needed to retrieve information on available network resources. Indexing is

important method since it speeds up the retrieval of context information.

• Context processing – the function manipulates raw context information based

on knowledge from the Context associations management function. It

aggregates context information, composes context, and performs filtering and

semantic search. It can be called by Context retrieval and Negotiation

management function when needed.

The contextware architecture interworks with external systems and functions via ACS

interfaces: ASI, ANI, and ARI (these include interaction with outside context sources,

context clients, and contextware functions within other Ambient networks). The ASI

would be responsible for conveying and receiving information relevant to the

application or service enabled across the various networks, which may or may not be

Ambient Networks. This information must be mapped or translated into ANI (the

interface between two ACS) and ARI (the interface from ACS down to connectivity

layer) in order to enable other functions simultaneously such as mobility and QoS.

2.22.22.22.2 AdaAdaAdaAdapppptive and Contexttive and Contexttive and Contexttive and Context----Aware ServicesAware ServicesAware ServicesAware Services

The Adaptive and Context-Aware Services (ACAS) project [9] aims to create

affordable and adaptive support for users to interact with services on the Internet

beyond that is possible with existing and planned cellular infrastructures. It has

identified three research areas: 1) Adaptive user interaction with services, 2) Seamless

adaptive services, and 3) Smart adaptive infrastructure.

 18

Figure 6: ACAS concept [9]

This project seeks to design mobile middleware to enable automatic configuration of

services between entities without having to know the services or their properties

beforehand. The services envisioned are context-aware and they are built on peer-to-

peer protocols.

The project has proposed an infrastructure for acquiring context data from sensors,

processing, and distributing context information, called a context information network,

that will be used by application and services via a context API. The infrastructure is

capable of discovering and managing context information, and utilizes policies to

control access to context information. The context information network consists of

application, general, and sensor layers, where the sensor layer is closest to physical or

virtual sensors, and the application layer provides context information in a format

ready for use by applications. The general layer is the core layer which provides

context distribution and adds abstractions to the sensor data.

Context distribution is based on the SIMPLE. It allows for subscribing to and

publishing presence information to interested entities. The infrastructure consists of a

network of Context Management enabled Entities (CMEs) which enable sharing of

context information between applications and devices (fig. 7). CMEs usually have a

client and server role, because they may need to answer context information requests

partly locally and partly by subscribing with other CMEs that have the missing parts of

the requested information. In this chain, each CME notifies the subscriber of its local

part of the subscription. CMEs also host the context repository for storing context

information. The context information is stored in the repository during its validity

time, unless stated otherwise.

 19

Figure 7: Context Management Entities

The another way to share and distribute context is via Context Data eXchange Protocol

(CDXP) [10], which is more efficient than the SIMPLE for transport of context

information directly between hosts, particularly on wireless links. Another important

part of CDXP is that rather than streaming a series of events the requestor can provide

a specification of when data is to be reported, e.g., only report a change in activity.

The context information itself is described in a context description language based on

XML. It is contained in a context element (defined by acas namespace), an object that

consists of the following attributes: id, value, datatype, unit, entity-reference, time,

source URI, and source content. The XML format allows entities to apply rules for

context refinement, translation to other formats, and inference. An example of a

context element is:

<acas:contextelement id="123c">

<acas:value datatype="string" unit="location">Home</acas:value>
<acas:entity-reference rel="acas:dsv.su.se/k2/r7741/l"/>
<acas:time>Fri Aug 25 00:05:21 CEST 2006</acas:time>
<acas:source uri="uri:acas:dsv.su.se/k2/csf/apax"/>

</acas:contextelement>

The context refinement is possible using Tryton rule language [38], an experimental

production language developed by ACAS project. It is used to apply rules to context

information and to produce new (refined) context. The rule matches the value of the

context information against the value stated in the rule description. If a match is found,

it creates the new computed context element.

The project also looks at service discovery mechanisms in local area networks

(LANs), metropolitan area networks (MANs), personal area networks (PANs), and

proximity-based peer discovery, which will not be covered in this paper. There are

proposals for protecting privacy through an anonymizer proxy [11] to hide the actual

network address from others – while still allowing them to access some context

information.

Application

Application

Application

Device

CME

Device

CME

User

CME

Location

 CME

Location

 CME

Application

Source

Source

Source

Source

 20

3333 Ideas and insightsIdeas and insightsIdeas and insightsIdeas and insights

3.13.13.13.1 CPLCPLCPLCPL extensions extensions extensions extensions

My initial work has lead to some preliminary results in the area of introducing context

parameters into a VoIP system [13][41]. The motivation behind this work was to

enable the user to control his/her incoming and outgoing calls in a more powerful

fashion that currenly available. The use of context information enhanced

functionalities of the existing SIP call control services and offered a user the

possibility to make decisions of whether to accept an incoming call based on his/her

current context. These services are implemented using CPL (Call Processing

Language) scripts and their behavior is described using set of rules.

Call Processing Language (CPL) is a language used to describe and control Internet

telephony services. It is described in RFC 3880 [14]. It works on top of SIP or H.323.

It can be implemented on either network servers or user agents; both can usefully

process and direct users' calls. CPL is an XML-based language, simple, extensible, and

independent of operating system or signalling protocol. It is not Turing complete, in

that it doesn't support recursions, variables, loops, or calls to external programs. These

limitations are to prevent users from doing something that could take a substantial

amount of time or could lead to problems for the server or other users.

CPL scripts are XML documents. The DTD (Document Type Definition) for CPL is

specified in the "cpl.dtd" file available at [15]. A CPL script consists of ancilliary

information about the script and call processing actions. Ancilliary information is

information which is neccessary for a server to correctly process a script, but which

does not directly describe any operations or decisions. A call processing action is a

structured tree that describes operations and decisions a telephony signalling server

performs when it receives a call setup event. There are two types of call processing

actions: top-level actions and subactions. Top-level actions are actions that are

triggered by signalling events that arrive at the server. Two top-level actions are

defined: "incoming", the action performed when a call arrives whose destination is the

owner of the script, and "outgoing", the action performed when a call arrives whose

originator is the owner of the script. Subactions are actions which can be called from

other actions. Subactions may not be called recursively.

Based upon considering several different scenarios we identified the need to extend

CPL with decisions based upon the following context parameters: user's location (e.g.

home, office, car, hotel), task (e.g. lunch, in a meeting, relaxing, on vacation, business

trip), and activity (e.g. discussing, presenting, listening). To implement these

extensions, we have defined a context-switch and its corresponding output context

node to support services whose decisions are based on the context information of an

end user.

 21

The syntax of the node "context-switch" and the "context" node are shown below:

Node: context-switch

Outputs: context specific context parameters to match

Parameters: owner context owner name

Output: context

Parameters: location location of a context owner

 task task status

 activity activity status

The definition of these CPL extensions for context is specified in the file "context.dtd".

The part of the file that contains CPL extensions is shown below:

<?xml version="1.0" encoding="UTF-8"?>

 <!-- Switch nodes -->

 <!ENTITY % Switch 'address-switch|string-switch|language-switch|

 time-switch|priority-switch|context-switch' >

 <!-- Context-switch makes choices based on context information. -->

 <!ELEMENT context-switch (context*, (not-present, context*)?,

 otherwise?) >

 <!ATTLIST context-switch

 owner CDATA #REQUIRED

 >

 <!ELEMENT context (%Node;) >

 <!ATTLIST context

 location CDATA #IMPLIED

 task CDATA #IMPLIED

 activity CDATA #IMPLIED

 > <!-- at least one and at most three of these attributes must appear -->

Adding a context switch allows an end user to make decisions based on the current

context parameters of a context owner. The context owner can be the user

himself/herself or the user can specify context for some other person (this assumes that

the other user allows this context information to be made access and the actions to be

applied). Values of context parameters are specified in the user's ontology document

(described in section 3.1.5). The user's context determines which script will be

uploaded to the SIP proxy (here implemented using SER, explained further in text; the

selection of which script to upload and how this upload occurs is described in section

3.1.2). When the context-switch node is invoked, it will match the context parameters

set by the ontology with context values in the CPL script and return a decision of how

to process an incoming/outgoing call (accept, reject, redirect, voicemail, etc.).

 22

An example of a CPL script based on this extended CPL is shown below. Here Jim's

SIP proxy will reject the incoming call if he is in the meeting room called Grimeton, in

a meeting, and if he is presenting.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE cpl SYSTEM 'file:C:/Programs/CPLEd/context.dtd'>

<cpl>

 <incoming>

 <context-switch owner="jim">

 <context location="grimeton" task="meeting" activity="presenting">

 <reject status="reject" reason="InMajorMeeting_and_Presenting"/>

 </context>

 </context-switch>

 </incoming>

</cpl>

For our measurements we have utilized a scalable and reliable open source SIP

platform, called SIP Express Router (SER) [16] to upload and execute CPL scripts

(figure 8). It can act as SIP registrar, proxy, or redirect server; however, here we have

used it primarily as a SIP proxy, but we also use it as the registrar to simplify the user's

specification of a new set of CPL scripts.

���������

	�
��
�����

���������

������

����

�����

����������

�����������������

�����

������

Figure 8: SIP Express Router

CPL scripts are uploaded using SIP's REGISTER method or with the aid of graphical

programs, such as CPLEd. CPLEd [17] is an open source CPL editor developed in

Java. CPLEd is used to download, upload, or remove CPL scripts from servers via

HTTP and via SIP (using the REGISTER message). CPLEd can be executed as an

applet embedded into a web page or as a standalone Java application. For our testing

we have select the script to upload based on an application that offers a user the ability

to browse for and to upload an ontology or a CPL script.

 23

The CPL script is parsed after uploading to SER, as depicted in figure 9. It is stored in

an external MySQL database [39] and is loaded and executed upon receiving

incoming/outgoing call requests delivered by SIP INVITE messages. SER executes the

appropriate part of the CPL script that refers to incoming or outgoing call and manages

the call routing logic (e.g., accept and route the call to the callee, reject the call,

redirect it to some third party, forward it to the user's voicemail, etc.).

Figure 9: SIP Express Router

The idea of this context-aware VoIP prototype was to make call processing dependent

on context parameters, so as to make it easier to specify a suitable action to be taken.

Context parameters are described in a user's ontology document. When the user wants

to upload a context-based CPL script (see figure 10), he/she has to first upload the

ontology to the match component, which first parses it, extracts the user's context

parameter values, and stores them into the external MySQL database (that is also used

by SER for storing user information and CPL scripts). Second, the match component

matches context values with the corresponding values in available CPL scripts to

determine which script describes rules for the user's current context. Before they are

uploaded to SER, these CPL scripts are stored in the CPL repository, while ontologies

reside in a context repository. Upon receiving a call or INVITE message from a SIP

UA, SER loads and executes the user's current CPL script. If the CPL script contains a

context-switch, it will match values set in script rules with the corresponding context

values, and if they match, take appropriate actions. The wrapper component is used to

retrieve context values set when the ontology was uploaded.

The prototype that we implemented in the lab consists of four components: a client

application, a match component, wrapper, and extensions to SER's CPL-C module

[40].

 24

Figure 10: Context-aware VoIP prototype

3.1.13.1.13.1.13.1.1 ClientClientClientClient application application application application

A simple client application is used for uploading ontologies and CPL scripts. It was

designed to be used from different machines and different locations, hence the

preferred implementation was as an applet (see the following figures).

Figure 11: CPLExtensions applet

 25

The user can upload an ontology or a CPL script. Note that this applet was built as a

proof of concept only. The alternative solution is to have two clients (applets), one for

uploading context (ontology) and another for uploading scripts.

Figure 12: File chooser dialog

Using an applet makes this updating possible from any computer on the Internet. A

drawback of this solution is that applet code needs to reside on the same machine as

SER is running on, and it can upload only a locally stored CPL script. The applet

opens the file chooser dialog (see figure 12) to browse for a file to open (i.e., which

ontology to load). Therefore it requires configuration of a suitable java policy on the

machine where SER is running and it can run in an applet viewer, but not in a browser.

A browser-based version could be implemented that used a service CGI (Common

Gateway Interface) script or a PHP generated web page with a radio button to select

the ontology.

3.1.23.1.23.1.23.1.2 Match componentMatch componentMatch componentMatch component

The match component is responsible for parsing the uploaded ontology to get context

values, determine the appropriate CPL script, and upload that script via SIP (or

HTTP(S)) protocol to SER. Both choices are available, but we mainly focused on SIP

in this prototype. If the CPL script was selected by an applet, then the match

component uploads it directly to SER. The match component requires a SIP domain

name to be exported by SER, the username, and the password of the user to which the

CPL script applies (see figure 13). SER will, upon receiving the script, store it in the

database under the supplied user's credentials.

 26

Figure 13: Data window

A free, open source CPLEd project [17] for uploading CPL scripts via SIP and

HTTP(S) was extended by adding a CPLEd.owl package to support the functions

needed by our match component. This program is written in Java and its source code is

provided in [13]. The applet class is CPLExtensionsDemo.java.

3.1.33.1.33.1.33.1.3 WrapperWrapperWrapperWrapper

A wrapper was created to pass context values between java applications (applet and

match component) and SER (which was written in C). The context parameters are

stored in the database when the ontology is parsed, and retrieved by the wrapper

program when the script is executed.

3.1.43.1.43.1.43.1.4 CPLCPLCPLCPL----C module extensionsC module extensionsC module extensionsC module extensions

We had to modify the cpl-c module of the SER source code to support our context-

switch and context node. This is explained in more detail in [13].

3.1.53.1.53.1.53.1.5 Context ontologyContext ontologyContext ontologyContext ontology

A common context ontology is important to enable all systems to cooperate. We chose

to describe this ontology in OWL (Web Ontology Language) [42]. OWL provides a

means to describe general concepts about basic context and it can be extended by

adding domain-specific ontology in a hierarchical manner. One of its strengths is reuse

of existing well-defined ontologies, rather then starting from scratch. Based on this

context ontology, logic-based reasoning can be performed to check the consistency of

context information and to reason using low-level, raw context information to derive

high-level, implicit context.

OWL is modeled through an object-oriented approach, and a domain structure is

described in terms of classes and properties. There are reasoners available that can

perform checking of class consistency and consumption, and other ontological

reasoning.

 27

Formalizing all context information would be an enormous and exaustive task. Instead,

the more efficient approach is to identify the most frequently used context information

or an application-required context information. We have chosen to model this

information as in context-dependent CPL scripts, namely: context owner, location,

task, and activity. The context ontology model is shown at fig.14.

Figure 14: Context ontology

The above diagram can be interpreted as follows:

• A user (class User) has context (User Context)

• User's context consists of the following properties: hasOwner, hasLocation,

hasTask, and has Activity

• A user has also address, but it is not relevant to this work

3.1.63.1.63.1.63.1.6 MeasurementsMeasurementsMeasurementsMeasurements

To evaluate the SER response time when executing CPL scripts with increasing

complexity, we made a series of measurements. We wanted to compare the difference

in time when executing standard CPL switches that read SIP header fields against our

context-switch that retrieves context parameters via an ontology. We tried to answer

the following questions: what is the added delay and what is the cost of adding

ontologies.

We started these measurements by executing a CPL script with one address-switch,

and then progressively added an additional switch, up to 5 in total. Next we did the

 28

same sort of tests when executing context-dependent CPL scripts. The measurements

are summarized in the figure 15.

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

1 2 3 4 5

Number of switches

R
e
s
p
o
n
s
e
 t
im

e
 [
s
][
s
]]

Address-switch

Context-switch

Figure 15: Comparison of (standard and context-dependent) CPL scripts response times

We can see from the figure that adding additional standard CPL switches didn't

increase the response time – it remained almost constant, with a total increase of 0,15

(in worst case 0,33) miliseconds, which is 4,6% (or at most 10%). When adding the

context-switch, we can see a linear increase of response time with the number of

context-switches.

Adding context-switches to a CPL script increases the response time from 0,4 up to 2,3

ms, a 5%-24% reponse time increase. The total response time increase for 5 context-

switches is 46,60%. The difference between the first and the second context switch

happened to be smaller than the increases in other cases (as shown in the fig.15),

because response time of the first context-switch includes the time needed for opening

a database connection, whose reference is reused by other context-switch nodes in the

same CPL script.

Figure 16 shows the comparison between different types of CPL scripts and their

response times: first when we have a CPL script with 2 address-switches, the second

script with 2 context-switches, and the third with 1 address-switch and 1 context-

switch. The results show that a combination of only context-switches is the most

expensive, while the combination of only address or other standard switches is the

least expensive.

 29

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

2 address-switches 2 context-switches 1 address 1 context

R
e
s
p
o
n
s
e
 t
im

e
 [
s
][
s
]]

Figure 16:Comparison of different types of CPL scripts and thier response times

3.23.23.23.2 Power consumption for different activities: Power consumption for different activities: Power consumption for different activities: Power consumption for different activities: iPAQ measurementsiPAQ measurementsiPAQ measurementsiPAQ measurements

Computing requirements for handheld devices running on batteries are growing faster

than the battery capacity [18]. Therefore these devices rely on selecting the right

algorithm and behavior to lower their power consumption, along with power

management techniques, thus it is very important to determine the impact on the

battery lifetime when using different applications, such as using GPS positioning over

a Bluetooth interface, WLAN connectivity, or audio and video playing. There are three

things to consider: first battery power consumption is not constant, it varies with time

as the battery voltage decreases. Second the battery capacity also varies with the load

placed on the battery. Third battery life greatly varies with the usage pattern of an

individual user and the configuration of the device (in this case an HP iPAQ h5550

[19] running Microsoft's Pocket PC operating system). Usage of some accessories can

significantly decrease the battery life. Given an understanding of battery drain of each

workload, device designers can design next generation devices with the improved

techiques for minimizing power consumption and optimizing the amount of energy

provided by the battery and application designers can optimize their applications for

the current hardware and software – to live within their power budget.

In our measurements we tried to determine the cost of getting GPS values from a GPS

receiver over a Bluetooth interface and to compare it with cost of other services, such

as WLAN connectivity or video & audio playing. We measured the battery power

consumption for each service and logged the remaining battery capacity every minute

(the log file was kept locally on the device). Then we put all these measurements into a

single graph to facilitate comparing them. We computed a least squares fit to each of

curves, then calculated the slope for each curve.

Measurements have been done with an HP iPAQ Pocket PC h5550. It uses a 1250

mAh Lithium-Ion Polymer removable/rechargeable battery with approximately 10

hours of battery life under optimum conditions and approximately two hours recharge

time under optimum conditions. This device also has an internal backup battery that

 30

allows the user to swap the removable battery with the system in standby mode. There

is also the 2500mAh Lithium-Ion Polymer extended battery that is sold separately,

however, this optional battery was not used for any of the experiments.

All measurements were started after the battery was fully recharged, and lasted until

the device completely ran out of power (or in the case of the WLAN interface until the

operating system shutdown the interface). Logging of battery consumption was

performed using a STATUS_CLIENT application [20]. The application was

configured to output a measurement every minute with the following information:

current time, percentage of the battery power remaining, AC line status, available

memory, and storage card free space.

For GPS measurements we used a GlobalSat BT-338 GPS reciever [21] with a

Bluetooth interface. The receiver contains a SiRF III low power GPS chipset [22]. The

receiver contains a replaceable battery with a large capacity (1700mAh), which

enables the BT-338 to run in continuous mode up to 17 hours. When fully charged, it

can operate more than 20 hours, in trickle power mode. It has a power saving function,

meaning that if the Bluetooth link is not connected to any devices for 10 minutes, the

receiver will automatically turn off the power. However, in our experiments it was

continuously connected via Bluetooth with the iPAQ.

Battery cost comparison

0

20

40

60

80

100

120

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

Time elapsed [min]

B
a
tt
e
ry

 p
o
w

e
r

[%
]%

]]

Cost of video Cost of MP3 Cost of Bluetooth Cost of WLAN

 Figure 17: Battery cost comparison

The result was that WLAN connectivity was the most expensive operation, followed

by video playing, then getting GPS values from the GPS receiver over the Bluetooth

connection, and finally audio playing. We saw from the measurements (shown at

fig.17) that the cost of getting GPS values from the GPS receiver over Bluetooth

connection is actually the cost of Bluetooth connection itself, so when determining the

system cost of GPS it is important that the GPS chipset is built into the device itself.

However, building the GPS receiver into the device without adding additional battery

capacity would mean much greater power consumption within the iPAQ than currently

occurs. Thus there is a trade off between communication with another device with its

 31

own battery and incorporating the functionality of this other device directly into a

single device.

Based on the detailed measurement and the resulting equasions presented in [23], it

should be possible to predict battery power consumption for services on an iPAQ.

Using this information one could try to optimize the behavior of each of these services.

3.2.13.2.13.2.13.2.1 Future workFuture workFuture workFuture work

As a continuation of this work, we will build a resource allocation model to describe

the effect of running different applications on different types of PDAs. The model will

consider the following resources: battery power consumption, available memory, and

processing power. The model could be used to predict the actual consumption of

resources before initiating a concrete service on a PDA.

We would like to apply this resource consumption model at both the device and

system level. Given this model, we will design and create a resource allocation

framework which can be further used when predicting resource consumption on PDAs

by various applications (fig.18). This framework will contain a resource broker

component that gathers information about resource state from different PDAs and

based on the prediction of resource consumption on each of the devices, it will

schedule activities for running different services on different devices, or propose other

activities to help the user achieve his task (e.g. "you can share the expense report over

Bluetooth, but it will cost you 10% of your remaining battery power, thus you might

want to use a flash drive to transfer this file").

Figure 18: Resource allocation framework concept

Resource broker

PDA1 PDA2

PDAn resource state list

resource state list

schedule (audio, 5min)

Task:

Don’t

cha.mp3

resource state list

 32

3.33.33.33.3 AllignAllignAllignAllignment with ment with ment with ment with anananan EU project EU project EU project EU project in which Appear Networks is in which Appear Networks is in which Appear Networks is in which Appear Networks is
involvedinvolvedinvolvedinvolved

The basic idea is to realize communication dispatch to end-users using context-based

addressing. Context-based addressing enables data packets to be sent to users based on

context specified as the destination address of a packet, when those users' current

context matches the context specified in the address. Context is collected from sensors

in the environment, modelled in high-level abstractions, and mapped to node

identifiers (SIP URIs, IP addresses, or node names). Communication dispatchers

establish a communication session with end-users using their preferred communication

means: instant messaging, VoIP, RSS feeds, or file sharing. We would like to

understand this concept in the concept of IMS, thus extending core IMS components

(CSCFs – Call Session Control Functions) with context parameters. We believe this

would bring an added value to the communication services which could be built on top

of it.

The results of this work should be (partly) integrated into the Middleware Platform for

Developing and Deploying Advanced Mobile Services (MIDAS) project [12], as there

is a requirement for middleware to support context-addressable communication

dispatch. Each node should be provided with a single middleware block, that is able to

adapt to changes in context and network topology (not only solving problems when it

comes to connectivity failures, but also exploiting opportunities, such as higher

available bandwidth). This middleware should be able to disseminate messages to

different nodes and we propose the concept of communication dispatchers to be used

for this purpose, as depicted in fig.19.
Figure 19: MIDAS midleware building block components

The MIDAS project seeks to define and implement a platform to simplify and speed

up the task of developing and deploying mobile applications and services. It focuses in

MIDAS middleware components

 33

particular on making it feasible to provide mobile services where: 1) the number of

users is very large, 2) the network may need to be set up at short notice, or for a

limited duration, and 3) when infrastructure is limited and some users may have to use

ad hoc, peer-to-peer communication links.

All service functions will be realized by entering, retrieving, or responding to changes

in data stored in the Distributed Data Management System (DDMS). Nodes update the

DDMS by asynchronously exchanging short messages. These are exchanged using one

or more communications mechanisms – depending on what other nodes are present

and what communication links are available (fig. 19).

The middleware will automatically adapt to changes in network topology, not only to

compensate for problems (e.g. failure of particular links), but also to exploit

opportunities offered (e.g. when high-bandwidth connections to central machines are

possible).

The middleware will provide structured mechanisms for representing and adapting to

changes in user context in a distributed, mobile environment. A service lifecycle

model will be defined that enables different infrastructure options to be available

during different phases of providing a service.

The middleware introduces the concept of context-addressable messaging, meaning

distributing information and events to different nodes based on the user's context

information. This context-based address will be used to perform routing tasks in

mobile ad hoc networks. The MIDAS concept of context-addressable messaging

should also be applicable to mobile ad hoc networks (MANETs) for ad-hoc, peer-to-

peer communication links, when the ability to infrastructure is limited (or too

expensive). It operates at the network layer of the OSI reference model and leads to

ontology based routing, i.e., routing which uses context addresses for dynamic

addressing, instead of IP-based static addressing. Context addresses will describe a set

of nodes matching a certain context. My approach for context-addressed

communication dispatch differs from the MIDAS context-addressable messaging

approach in that it will use the existing IP layer for routing information. Context-based

addressing will be based on mapping a node's name and IP address to the current

context assigned to that node. Mapping of nodes addresses to current context

parameters is done by context service (as described in section 1.5). The proposed way

of communication dispatch will not require changes in the IP layer and will not require

reasoning on every node along the route, as it will be the case for MIDAS approach.

Thus, it is expected to require less efforts in terms of coding, show better execution on

mobile devices, and consuming less energy than the concept of context-based

addressing presented in MIDAS.

 34

3.43.43.43.4 Future workFuture workFuture workFuture work

The CPL extensions work was carried out as a part of the ACAS project [9] to

investigate the possibilities of intelligent call processing based on context parameters.

The plan for the future work is to design and build a SIP proxy server enhanced with

context capabilities, that will be able to control the user's incoming/outgoing calls and

establish sessions between the users based on their current context and preferences

regarding communication means and device used for content delivery. The SIP proxy

server will be ported to a mobile device, such as PDA or smartphone.

4444 Statement of Statement of Statement of Statement of the solution the solution the solution the solution being soughtbeing soughtbeing soughtbeing sought

We would like to realize the concept of context-addressable communication dispatch

as a part of mobile middleware. This solution would result in an overall architecture of

the system and a prototype on the mobile device as a proof of concept. Performance

evaluation and the cost of running the necessary services would be part of thesis work.

 35

5555 Plan of actionPlan of actionPlan of actionPlan of action

The plan for course work includes the following list totaling 30 points:

• 2G1325 Practical Voice Over IP, 5p (completed spring 2006, Prof.

Maguire)

• 2G5664 Wireless and Mobile Network Architectures, 5p (completed spring

2006, Prof. Maguire)

• 2G1704 Internet Security and Privacy, 5p (completed winter 2005,

Montelius)

• 2G1722 Developing Mobile Applications, 5p (completed winter 2005,

Montelius)

• 6B4015 Developing applications for 3G mobile phones

(Applikationsutveckling för 3G telefoner), 5p (completed spring 2006,

Karlsson)

• 2E1624 Performance Analysis of Communication Networks, 5p (spring

2007, Fodor)

The plan is to organize this thesis work into several activities, of which each one

should result in a publication. Activities correspond to the major research issues of the

problem to be solved.

1. Context-aware VoIP system: extensions of CPL with context

ontology – this has an initial publication [41]

2. Building context sources

� identifying sensor information

� retrieving information from software sensors

� modelling context, comparison of different approaches for

context modelling (ontology, object oriented models, key-

value pairs, logic-based models, etc.)

� synthesizing context

3. Building context service component

4. PDA measurements: predictions and optimizations for resource

consumption of running services

5. Context-addressable communication dispatch

 36

6666 TTTThesishesishesishesis outline outline outline outline

A rough outline of the licentiate thesis is:

1. Introduction

2. Problem statement

3. State-of-the art of context management

3.1. Context-aware systems and infrastructures

3.2. Context representation, acquisition, aggregation, and synthesis

4. Context-aware VoIP system: CPL extensions with context parameters

5. PDA measurements: predictions and optimizations for resource consumption of

running services

6. Context-addressable communication dispatch

6.1. Testbed

6.2. Measurements: performance evaluation, cost of running services, etc.

7. Conclusion

8. Future work

References

The related publications would be included as appendices.

 37

7777 ReferencesReferencesReferencesReferences

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley, and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261,

http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[2] B. N. Schilit, N. Adams, and R. Want, "Context-Aware Computing Applications", IEEE

Workshop on Mobile Computing Systems and Applications, December 1994.

[3] G.Chen and D. Kotz, "A Survey on Context-Aware Mobile Computing Research",

Technical report TR2000-381, 2000.

[4] A. K. Dey and G. D. Abowd, "Towards a better understanding of context and context-

awareness", In Conference on Human Factors in Computing Systems CHI 2000 Workshop on

the What, Who, Where, When, and How of Context-Awareness, April 2000.

[5] K. Barett and R. Power, "State of the art: Context management", M-Zones deliverable1,

http://m-zones.org/deliverables/d1_1/papers/4-01-context.pdf, May 2003, p.69-87.

[6] Ambient Networks, Integrated Project of European IST 6th Framework Programme,

http://www.ambient-networks.org/

[7] A. Karmouch, R. Giaffreda, A. Jonsson, A. Galis, M. Smirnov, R. Glitho, and A.

Karlsson, "Context Management Architecture for Ambient Networks", Wireless World

Research Forum, Toronto, Canada, November 2004.

[8] R. Giaffreda, A. Karmouch, A.Jonsson, A. M. Karlsson, M. I. Smirnov, R. Glitho, A.

Galis, "Context-aware Communication in Ambient Networks", Wireless World Research

Forum, June 2004.

[9] Adaptive and Context-Aware Services (ACAS) project,

http://www.wireless.kth.se/AWSI/ACAS/, Center for Wireless Systems, Royal Institute of

Technology (KTH), Stockholm, Sweden, August 2006.

[10] Andreas Wennlund, "Context-aware wearable device for reconfigurable application

networks", M.Sc. thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, March

2003.

[11] Wei Li, "Towards a Person-Centric Context Aware System", Licentiate thesis, Royal

Institute of Technology (KTH), Stockholm, Sweden, March 2006.

[12] MIDAS (Middleware Platform for Developing and Deploying Advanced Mobile

Services) project, Strategic research project (STREP) of European IST 6th Framework

Programme, http://www.ist-midas.org

[13] A. Devlic, "CPL extensions", Report for the Practical VoIP course, draft version,

http://web.it.kth.se/~devlic/CPL%20extensions.pdf, May 2006.

[14] J. Lennox, X. Wu, and H. Schulzrinne, "Call Processing Language: A Language for User

Control of Internet Telephony Services", RFC 3880, http://www.ietf.org/rfc/rfc3880.txt,

October 2004.

[15] CPL XML DTD draft, http://xml.coverpages.org/CPL-DTD-200201.txt, IETF, January

2002.

[16] SIP Express Router, iptel.org, http://www.iptel.org/ser/, April 2006.

[17] CPLEd, a free graphical CPL editor, http://www.iptel.org/products/cpled/, September

2002.

[18] M. A. Viredaz and D. A. Wallach, "Power evaluation of a handheld computer", IEEE

MICRO, 2003, pp. 66-74.

[19] HP iPAQ Pocket PC h5500 series product overview,

http://h20000.www2.hp.com/bc/docs/support/SupportManual/c00046402/c00046402.pdf

[20] Inmaculada Rangel Vacas, "Context aware Adaptive Mobile Audio", Master thesis,

KTH Microelectronics and Information Technology, 2005,

 38

ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS/050418-Inmaculada-Rangel-

Vacas.pdf

[21] GlobalSat web site, Bluetooth GPS receiver BT-338 description,

http://www.globalsat.com.tw/english/products_detail.php?main_id=20&p_id=74

[22] SIRFstar product sheet of SIRFstar III GPS chipset,
http://www.sirf.com/Downloads/Collateral/GSC3(f)_6.20.05.pdf
[23] A. Devlic, "iPAQ measurements", Technical report,

http://web.it.kth.se/~devlic/iPAQMeasurements.pdf, February 2006.

[24] D. Johnson, C. Perkins, and J. Arkko, "Mobility Support in IPv6", draft-ietfmobileip-

ipv6-24.txt, http://users.piuha.net/jarkko/publications/mipv6/drafts/mobilev6.html, IETF

Mobile IP WGr, June 2003.

[25] C. Perkins, "IP Mobility Support for IPv4", http://www.ietf.org/rfc/rfc3344.txt, IETF

RFC 3344, August 2002.

[26] R. Want, A. Hopper, V. Falco, and J. Gibbons, "The Active Badge Location System",

ACM Transactions on Information Systems, January1992.

[27] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket Location-Support

System", Proceedings of the Sixth Annual ACM International Conference on Mobile

Computing and Networking (MOBICOM), Boston, US, August 2000.

[28] P.Bahl and V.N.Padmanabhan, "RADAR: An In-Building RF-based User Location and

Tracking System", Proceedings of IEEE Infocom 2000, Tel-Aviv, Israel, March 2000.

 [29] S. Vovida, E. D. Mynatt, B. MacIntyre, and G. M. Corso, "Integrating Virtual and

Physical Context to Support Knowledge Workers", IEEE Pervasive Computing, p.73-79, July

2002.

[30] B. N. Schilit, N. Adams, R. Gold, M. M. Tso, and R. Want, "The PARCTAB mobile

computing system", In Workshop on Workstation Operating Systems, p.34-39, October1993.

[31] A. K. Dey and G. D. Abowd, "A Conceptual Framework and a Toolkit for Supporting

the Rapid Prototyping of Context-Aware Applications", available at: http://www-

static.cc.gatech.edu/fce/ctk/pubs/HCIJ16.pdf, November 2002.

[32] M. A. Muñoz, M. Rodríguez, J. Favela, A. I. Martinez-Garcia, V. M. González,

"Context-Aware Mobile Communication in Hospitals", IEEE Computer, p.38-46, September

2003.

[33] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, and J. Altmann, "Context-

Awareness on Mobile Devices – the Hydrogen Approach", In Proceedings of 36th Hawaii

International Conference on System Sciences, 2003.

[34] J. Heidemann and D. Shah, "Location-aware scheduling with minimal infrastructure", In

Proceedings of 2000 Usenix Annual Technical Conference, San Diego, California, June 2000.

[35] J. Korva, J. Plomp, P. Määttä, and M. Metso, "On-Line Service Adaptation For Mobile

and Fixed Terminal Devices", Mobile Data Management: Second International Conference,

Lecture Notes in Computer Science, Hong Kong, China, p.252-263, January 2001.

[36] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, "Context-aware Middleware

for Resource Management in the Wireless Internet", IEEE Transactions on Software

Engineering, p. 1086-1099, December 2003.

[37] WWI Ambient Networks, IST-2002-2.3.1.4, "Ambient Networks ContextWare",

Deliverable 6.1, January 2005.

[38] C.-G. Jansson, M. Jonsson, T. Kanter, F. Kilander, G. Q. Maguire Jr., and Wei L.,

"Context middleware for adaptive services in heterogeneous wireless networks", In

Proceedings of the IEEE 61
st
 Vehicle Technology Conference (VTC 2005-Spring),

Stockholm, Sweden, June 2005.

[39] MySQL, http://www.mysql.com, 2006.

 39

[40] CPL-C module of SER, http://www.iptel.org/ser/component/module/cpl_c, iptel.org,

2005.

[41] A. Devlic, "Extensions of CPL with context ontology", In Mobile Human Computer

Interaction (MobileHCI 2006) Conference Workshop on Innovative Mobile Applications of

Context (IMAC), Espoo/Helsinki, Finland, September 2006.

[42] OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/, 2004.

